Low Rank Perturbations of Quaternion Matrices
نویسندگان
چکیده
منابع مشابه
On low rank perturbations of matrices
The article is devoted to different aspects of the question: ”What can be done with a matrix by a low rank perturbation?” It is proved that one can change a geometrically simple spectrum drastically by a rank 1 perturbation, but the situation is quite different if one restricts oneself to normal matrices. Also the Jordan normal form of a perturbed matrix is discussed. It is proved that with res...
متن کاملSome Observations on Inverses of Band Matrices and Low Rank Perturbations of Triangular Matrices
متن کامل
A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملThe eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices
We consider the eigenvalues and eigenvectors of finite, low rank perturbations of random matrices. Specifically, we prove almost sure convergence of the extreme eigenvalues and appropriate projections of the corresponding eigenvectors of the perturbed matrix for additive and multiplicative perturbation models. The limiting non-random value is shown to depend explicitly on the limiting eigenvalu...
متن کاملThe singular values and vectors of low rank perturbations of large rectangular random matrices
In this paper, we consider the singular values and singular vectors of finite, low rank perturbations of large rectangular random matrices. Specifically, we prove almost sure convergence of the extreme singular values and appropriate projections of the corresponding singular vectors of the perturbed matrix. As in the prequel, where we considered the eigenvalues of Hermitian matrices, the non-ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Linear Algebra
سال: 2017
ISSN: 1081-3810
DOI: 10.13001/1081-3810.3629